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THERMOCAPILLARY DRIFT OF A DROP IN THE CASE WHEN THE SURFACE TENSION 
DEPENDS NON-LINEARLY ON THE TEMPERATURE" 

YU.P. GUPALO, A.E. REDNIKOV and YU.S. RYAZANTSEV 

An approximate analytic solution of the problem of the motion of a 
spherical drop (or a bubble) in an unbounded viscous incompressible 
fluid dependent on an external constant temperature gradient is 
obtained in the quasistationary approximation. The motion is connected 
with the appearance of tangential stresses at the drop surface caused by 
the change in the value of the surface tension 4 with temperature T 
(the Marangoni effect), and is directed towards the sections of the 
external medium heated to a higher temperature when do/dT<O, and in 
the opposite direction when do/dT>O (thermocapillary drift). 

Unlike the case studied earlier in /l-3/ of the linear dependence of the surface tension 
on temperature, the present paper considers an arbitrary, non-linear dependence (in 
particular a quadratic dependence characteristic of aqueous solutions of high mol.wt. 
alcohols, certain metal alloys and nematic liquid crystals /4, 5/j. 

The velocity and temperture distributions inside and outside the drop are obtained, when 
there is no gravity, under the assumption that the Reynolds and thermal Peclet numbers are 
small. 

It is shown that the non-linear dependence of the surface tension on temperature may 
lead to the appearance of equilibrium states in which the centre of mass of the drop is at 
rest, while the fluid inside and outside it moves in a steady manner. When the conditions 
are sufficiently general, such states of stable equilibrium correspond to the presence, in 
the two-phase medium, of a plane of attraction normal to the unperturbed temperature gradient 
at which the particles of disperse phase concentrate. In practice, this may upset the 
process of separation of the impurities in conditions of low gravity (for example in the case 
when bubbles have to be removed from a melt). Analysis of the change in the form of the drop 
shows that at low Weber numbers a drop in the equilibrium state takes the form of an 
ellipsoid of revolution flattened in the direction of the outer temperature gradient when 

@oidTZ = const > 0, and stretched in this direction in the opposite case. 

1. Formulation of the problem. We consider the steady-state motion of a drop of 
a viscous incompressible liquid in another, mutually immiscible viscous incompressible liquid 
occupying the whole space. The liquid is at rest at infinity, and a constant temperature 
gradient is specified. We assume that the densities, viscosities, thermal conductivities and 
heat capacities of the liquids inside and outside the drop are constant, the surface tension 
is an arbitrary function of the temperature, the motion of the drop is fairly slow (small 
Reynolds and Peclet numbers) and, that the drop remains spherical (the deviation from 
spherical shape will be discussed at the end of Sect.21. The problem is symmetrical about 
the z axis passing through the centre of the drop in a direction parallel to the outer 
temperture gradient. 

It will be convenient to introduce a reference system attached to the centre of the 
moving drop (as the problem is then reduced to the analysis of a streamlined plane-parallel 
flow past a drop, where the velocity of flow has to be determined), and to measure the 
temperature relative to the unperturbed temperature at a point at which the centre of the 
drop is found at the given instant. Then the temperature at any point of the space will be 
given by the expression 

Ti = T, (~0) + S, (5 - ~0) + Ti' (1.1) 

Here and henceforth the indices i = i,2 will refer to the outside liquid and the drop 
respectively, S, is the magnitude of the given outer temperature gradient away from the 
drop (SW>0 if the direction of the temperature gradient is the same as the positive 
direction of the x axis, and S, (0 otherwise), Tc., Cd is the temperature unperturbed 
by the drop at some point of the 5 axis with the coordinate so,5 is the coordinate of the 
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point at which the centre of the drop is situated at the given instant, and Ti’ is the 

temperature relative to the unperturbed temperature at the point with coordinate x. 
Assuming that the surface tension depends linearly an temperature and using the 

reference system attached to the centre of the drop, we obtain the steady-state distribution 
of the velocities and temperature Tf' for the case of a steady drift of the drop fl-31. 
When the dependence of the surface tension on temperature is arbitrary, its derivative with 
respect to temperature, which defines the Marangoni effect, will in general change with the 
motion of the drop. We shall consider the problem in the 

from the positive direction of the CC axis, the 
equation of the boundary conditions for the velocity and temperature in the form 

0 = - Vp, $ piAvi, div vi = 0, AT1' = 0 

r-+00, VI+ U, cos Be, - U, sin EJee, T,‘-+ S,r cm 0 

r-+0, lv,l<=, iT,‘/<co 
r = a, Vp = u,, = 0, vie = v,e 

w--a _ a% au CT 

2 -pa ar p1 ar a 
-..LL+- 

Here U, is the velocity of the incoming flow which has to be determined from the 
condition that the force acting on the drop ((U,>O) vanishes if this velocity is directed 
along the x axis, and ucoto otherwise), 
Pi* and hi 

Vi, pi, pt is the velocity, pressure and density, 
are the dynamic viscosity coefficient and thermal conductivity, and e, 

are unit vectors of the spherical system of coordinates. 
and eg 

All unknown functions as well as 
is the same, 

U,, d&-IT, depend parametrically on time, or, which 
on the x coordinate of the centre of the drop, since 

(1.5) 

After introducing the stream function and changing to dimensionless coordinates, we can 
write the equations Bnd boundary conditions (1.4) in the form 

E+iOo; Ek+++%+ (1.6) 

r--t 00, ‘pl -+ rp, r-+0, 1% I< 00 (1.10) 

r= 1, ‘PI = (Pzr acp,iar = GapJar 
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Here the velocities and the spatial coordinate are referred, respectively, to the 
velocity U, and radius of the drop a, with the previous notation used to describe them, M 
is a dimensionless function of x, and u (when the surface tension depends linearly on tem- 
perature,thenM becomes the Marangoni number (apart from the sign)). 

2. The velocity and temperature field. The velocity of drift of the drox, and 
distortion of its shape. The solution of Eqs.Cl.6) with boundary conditions (1.7) determin- 
ing the velocity field inside and outside the drop is as follows (e.g. /6/J: 

ql = (r2 + A,. _ +) T + -f (r-+3 -- (p) 

q+ (A + - rz) + 2 (P+* - G, (p) 

Here G, the of the first kind, of and degree '1~. 
The constants A,A,,-L..' (depending parametrically on X) will determined from the 
boundary condition (1.8) using the solution of on the temperature 
distribution. 

stationary with respect to Peclet number the zeroth approximation. 
After substituting relations (2.1) and (2.2) the boundary condition (1.8), the 

latter takes the form 

s(l+A+~(~+A))G,(p)t~A,(4~-2)(~+~)G,(~)= 

&(I-wf 

(2.2) 

the expansion of function (1 M(z, p) in in 
terms the Gegenbauer functions e.g., /6/) 

(1--P2)M(~.tt)=~_:n(n--1)(2n--1)B.(2)G,(p) 
n=* 

B,(s) = i M(s, u)&(p)+ 
-1 

(2.4) 

(2.5) 

and equating to zero the sum of the coefficients of Gegenbauer functions of like order, we 
obtain 

A,, = 3n(n-1) 
4(2+d)(*+p)B”’ n=3.49 ... 

W) 

After determining the constants A, A,,A,,..., the quasistationary velocity field 
inside and outside the drop becomes completely constructed. The force acting on the 
drop from the direction of the outer liquid is given by the expression /6/ 

P = -4npL,aA U, 

or, after substituting relations (2.5) and (2.6) and taking into account the expression 

for M (I, p) (see Sect.11, by the expression 
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The speed of drift of the drop u(U = -U,) is found from the condition that 
above force vanishes: 

‘1 

u (5) = - 
3 aS.n 

2 (2 + W(2 + 38) Pl s g (57 PL) (1 - $9 dP 
-1 

We see that when the relation (J = a(T) is decreasing, the drop drifts in the 

(2.7) 

the 

(2.8) 

direction of increasing temperature of the external liquid. In the special case of a 
decreasing linear relation (doldT = const< 0) , we obtain from (2.8) the well-known result 
/l-3/ 

as 
u= 

2 Lda 
I I (2+@(2 + 38) PI dT 

Using expression (2.8) we can obtain from Eq.tl.5) the x coordinate of the centre of 
mass of the drop as a function of time. 

When the rate of flow past the drop is given and the internal viscosity becomes infi- 
nitely large (/3-+ OO), the thermocapillary convection within the drop will be suppressed 
and (2.7) will yield Stokes's formula for the resistance of a solid sphere, while in the case 
of infinitely large thermal conductivity of the liquid within the drop (6-t m) (2.7) will 
yield the Rybchinskii-Hadamard formula for the resistance of the drop, and the decrease in 
temperature along its surface as well as the Marangoni effect will both vanish. In both 
limiting cases the rate of drift of the drop will become zero. 

The conditions that the Reynolds and Peclet numbers are both small, adopted in this 

paper, impose an upper limit on the possible values of the quantities S, and doldT. 
Using the quasistationary solution for the velocity field, we shall estimate the 

characteristic time t according to (1.2). We obtain 

'c - (ILL + ~2) (u&a I d%/dT21)-1 (2.9) 

i.e.the conditions of quasistationarity (1.3) will hold for a sufficiently slow change in the 
value of the quantity doldT with temperature, and sufficiently small drop size and the 
values of external temperature gradient. 

In formulating Problem (1.6)-(l.lO), we have omitted the boundary condition for the 
normal stresses at the boundary of the drop: 

(2.10) 

Here u0 is the zeroth term in the expansion of the function a(p) in terms of 
Legendre polynomials, We, Re is the Weber and Reynolds number, h = lieHa, H is the 
curvature of the surface of the drop (for a spherical drop we have H = 2/a, h = f), p1 and 
PZ are the dimensionless pressures outside and inside the drop referred to p,a-'U, 

pzu-'U, respectively, and we can obtain for them the following expession /6/: 
and 

Here pm is the dimensionless pressure away from the drop, n is a constant, the 
expressions for A, A,, A,, . . . . are given in (2.6), and P,(p) is an n-th order Legendre 
polynomial. 

Substituting into (2.10) the already known solutions (2.1) and (2.11) and taking into 
account (2.5) and (2.6) and relation 
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which can be derived from (2.4), we can show that condition (2.10) is not, in general, 
satisfied. This means that the shape of the drop cannot remain spherical (h# 1). However, 
when the condition (WeiRe) B(( 1 is satisfied, where B = msx B,,, holds, the deviation of 

71>2 

the shape from the spherical will be small and Eq.(2.10) will have to be regarded as a 
boundary condition for the normal stresses referred to the spherical surface (r = I), which 
will reduce, in the principal approximation, to a Laplacian jump in pressure at the drop 
surface. 

We will seek the shape of the surface in the form 

R (p) = 1 f EE (p) + . . ., e = WeiRe (2.12) 

(2.13) 

The expansion (2.13) begins with the term with number n = 2, since the volume of the 
drop does not change when its surface is deformed and the origin of coordinates is chosen at 
its centre of mass. 

The dimensionless curvature h can also be represented as an expansion 

h = 1 + Et&(” + . . . 

and by virtue of the relation 

(2.14) 

it will be 

m 

h(l) = r, l@,(p), yn = tn - $0 + 2, a, 
n=2 

(2.15) 

After substituting into (2.10) the relations (2.1), (2.11) and (2.14) and taking into 
account (2.15), we obtain 

This yields the constant n, and taking into account the relations (2.6) we obtain 

The first equation of (2.16) reflects the fact that the force acting on the drop is 
equal to zero. Substituting the second relation of (2.16) into the second relation of (2.15), 
we obtain 

3(b-nf3--n-2) 
on = 2(2 + S)(i + B)(n - l)(n + 2) Bn+r (2.17) 

which, together with (2.12) and (2.13), determines the form of the drop surface. 
When A-+00, the drop becomes spherical within the approximation used. When fi-+m, 

the drop remains, in general, non-spherical. This is connected with the fact that although 
the motion of the liquid within the drop may be very slow, the liquid is very viscous and 
this leads to the appearance of appreciable stresses and pressure drops and non-sphericity of 
the shape, with the non-uniformity of the temperature along the surface making an additional 
contribution to it. 

In the special case when the surface tension depends linearly on temperature, we find 
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that c+, = 0 (n = 2, 3, . ..), i.e. the drop, as was to be expected in accordance with the results 
of /2/, retains its spherical shape within the approximation used. 

3. f&ldriXtk de-e of the surface tension on temperature. The e~~l~~ plane. 
We shall consider a quadratic dependence of the surface tension on temperature 

The characteristic time of change of the velocities (2.9) will be 

5 - (Pt + a*) (I o 1 @JLY 

We obtain the following expression for the first derivative of the surface tension with 
respect to temperature, by virtue of the relations (1.1) and (2.2): 

-$ (x, r) = a ( T (x& + &a @ - a$ - T, -t & a%) 

Substitution into (2.8) and integration yields the following expression for the drift 
velocity: 

2aaS,'(x*--4 
fJ(x)= (2+@(2+3@)BX I G=.~o-+ 

To-T (9) 
s, (3.3) 

When z = z* , the drift velocity becomes zero, hence we can call the plane r =x* 
the equilibrium plane (EP). Indeed, if the centre of the drop at rest lies in this plane, 
the force exerted on the drop is equal to zero and the drop remains at rest. This state may 
be found to be unstable. 

Qualitative considerations show that when relation (3.1) has a minimum, i.e. when 

o > 0, the EP will represent a plane of attraction and the equilibrium will be stable (the 
drift velocity outside the EP will always be directed towards the plane). When u<o, 
the EP will represent a plane of repulsion and the equilibrium will be unstable (the drift 
velocity will be directed away from the plane). 

In order to estimate the time at which the drop reaches the EP (when a>O) , we use 
the relation (1.5) where U, = -U, and formula (3.3). We obtain 

xft)=r*+(z(to)--*)exp - ~ C 1 (t--*)-J 

i.e., as we expected, when starting from an arbitrary initial position, the drop will reach 
the EP after an infinitely long time. 

We can transfer the concept of the EP to the case of an arbitrary dependence of the 
surface tension on temperature. We can also have a single (for the quadratic relation (3.1))‘ 
or several EP's, or, as in the case of a linear dependence, there may be no EP's. If the 
surface tension is independent of the temperature, any plane can serve as the EP. 

We can assert that if the first non-zero quantity 

1 

has an even number and is positive, then the EP is stable (the drift velocity in a 
sufficiently small neighbourhood is directed, on both sides of the EP, towards the plane). 
Otherwise the EP is unstable (the drift velocity in a sufficiently small neighbourhood is 
directed, on one or both sides of the EP, away from the plane). If the surface tension is 
independent of the temperature, then D, = 0 (n = 2,s ..,) and the EP will be neutrally 
stable. 

In the case of the quadratric dependence (3.1) the EP coincides with the plane of 
extremal value of the surface tension. When the dependence of the surface tension is 
arbitrary, the situation is, in general, different. Moreover, the position of the %P, and 
even its existence, may depend on the size of the drop. 

We shall determine, as an example, the velocity of drift of an air bubble in an aqueous 
solution of n-heptanol. It was shown experimentally in /5/ that at sufficiently large 
concentrations the surface tension at the solution-air interface depends non-monotonically 
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on temperature, and this dependence can be described in an approximate manner by the quadratic 
relation (3.1). 

Thus for a concentration of 7.6+10-JM we obtain the relation (3.1) where a x ti.6 j * NI 
(m - deg'), T,= WC and an air bubble of radius a = 10-* m will move, in an external *'olem- 
perature field whose gradient is S, = 5Qideg/m, as follows from (3.3), with a velocity U 
[m/secl =z 1.3.10~"8 fml. Here y is the distance between the centre of the drop and the 
plane at rest. Since the solution was very dilute, its viscosity, within the temperature 
range in question, was assumed to be equal to the mean viscosity of water (~L~~Go.B~.II.)-( kg/m - 
see). It was also taken into account that in the case of a bubble fi -(J.&- II. At a 
distance of O.lm from the EP the bubble will move with a velocity of 1.3.16-4 m/sec=7 .a mm/ 
min and at a distance of 0.01 m, the velocity will be i.3.i0-j mlsec=0.78 mm~min. 

It can be confirmed that the conditions of quasistationarity (1.3) and the assumption 
that the Reynolds and Peclet numbers are both small, also hold. Indeed, for the numerical 
values quoted above we have (the drift velocity is taken at a distance of 0.1 m from the EP) 

4. 

We 
lies in 

Hei+ - 2. it?-*, -10-1 

z--/tDoc; $- ,( IO", Pe&$ 10-a 

Velocity field and the distortion of the spherical form of the drop at the EP. 

shall consider the flow arising outside and inside the drop when its centre of mass 
the EP, in the case of a quadratic relation containing a minimum (a.>O). Expression 

(3.2) for the rate of change irf surface tension with temperature at 
take the form 

and, taking into account (2-l), (2.5) and 12.61, we can write the expressions for the 
dimensionless 

Here the 
velocity 

(the velocity given above is attained at 0 = n/4, 3nl4, i.e. at the points of the drop 
surface equidistant from the EP and the normal to it passing through the centre of mass of 
the drop). 

stream function as follows: 

q*l = (1 - l/r%) (1 - @) p, $*a = (r6 - rS) (1 - @) p 

the drop s&face will now 

(4.1) 

value of the maximum velocity at the drop surface is chosen as the scale of 

U”= 
9a (as,)* 

@PI (2 + wit -I- P) 
(4.2) 

For example, in the case of an air bubble of radius a= 10+m in an aqueous solution 
of n-heptanol of concentration 7.6.10-S M, situated at the EP, with an external temperature 
gradient S, = 160deg/m, the maximum velocity of flow at the surface will be U"zz.z.iO-*m/set= 
1.3 mm/min. 

We note that the flow outside and inside the drop situated at the EP will be stationary, 
whether conditions (1.3) hold or not. 

The pattern of the stream lines is shown in the figure, with the arrows indicating the 
direction of the flow. The velocity field has the following structure. Inside the drop we have 

two vortex filaments in the form of circles (r = jfs, p = I/t/g and r = Jfvsz p = --l/f9 

of radius Jf"K, parallel to the EP and symmetrical about the centre of mass of the drop, at 

a distance of Z/1/5 from each other. Outside the drop and at large distances from its 
centre of mass, the liquid will flow along the rays p = const. When -l/1/3< pc1/1/3, it 

will flow towards the drop, while when -t.<p< --l/f3 and f/1/3< p< 1~ it will flow 

away from it. The rays p = +l/$fS are characterized by the fact that the radial velocity 
components vanish, and the mayimum approach of every outer stream line to the centre of the 
drop occurs at the point where it intersects one of the above rays. 

The case when relation (3.1) has a maximum (a < 0) I is treated in the same manner. The 
pattern of stream lines will be identical, but the direction of the flow will be reversed. 

When the drop lies in the plane of stable equilibrium and relation (3.1) (a>@ holds, 
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its form will be given, taking relations (2.12), (2.13), (2.171, (2.5) and (3.2) into 
account, by the expression 

The result obtained shows that the surface of the drop represents, apart from terms of 
the order of 0 (E), an ellipsoid of revolution flattened (ablate) along the direction of the 
outer temperature gradient, and the ratio of the lengths of its principal semi-axes is given 
by the relation 

Here c is the length of the semi-axis directed along the outer temperature gradient, 
and b is the length of the other semi,-axis. 

+=1+ ~(%F(Bi-4) 
40(2+ Q'@ + I)00 

(4.4) 

The results (4.3) and (4.4) also hold in the case when relation (3.1) has a maximum 

(a< 0). The ellipsoid of revolution will in this case be extended (prolate) along the 
direction of the outer temperature gradient. 

We see from (4.3) and (4.4) that the degree of deviation of the surface from spherical 
increases as the size of the drop and the value of the outer temperature gradient increase. 

For the case with numerical values given above blc= i+ 4.10-7, i.e. the deviation of 
the form of the bubble from spherical is infinitesimal. 

In conclusion we note that an analogous analysis can be carried out when there was a 
gravity field parallel to the outer temperature gradient, provided that the convection due to 
gravity is insignificant. The velocity of motion will be found from the condition that the 
total force acting on the drop and equal to the sum of the force (2.7) and the mass force, is 
zero. When the dependence of the surface tension on temperature is non-linear, we can also 
have an EP (when the dependence is linear, we either have no EP, or any plane can serve as an 
EP) . A qualitative analysis of their stability can be carried out in a manner completely 
analogous to that without gravity. It can also be shown that within the approximation used 
here the presence of the gravity force does not affect the form of the surface, since, as can 
be seen from (2.12), (2.131, (2.17) and (2.51, it does not depend on the velocity of motion 
of the drop. 
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